

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 402-404

Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABA_C receptors

Tina Hinton,^a Mary Chebib^b and Graham A. R. Johnston^{a,*}

^aThe Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, The University of Sydney, NSW 2006, Australia

^bFaculty of Pharmacy, The University of Sydney, NSW 2006, Australia

Received 28 August 2007; revised 4 October 2007; accepted 5 October 2007 Available online 17 October 2007

Abstract—The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant ρ 1 GABA_C receptors. Their enantioselectivity (R > S) matched that reported for their agonist actions at GABA_B receptors, but was the opposite to that reported at GABA_A receptors (S > R). The corresponding methylphosphinic acid analogues proved to be ρ 1 GABA_C receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA_A, GABA_B and GABA_C receptors.

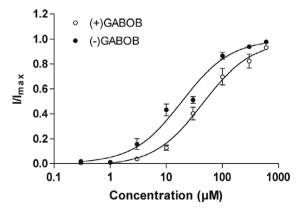
Receptors for GABA, the principal mediator of neuronal inhibition in mammalian brain, may be grouped into three major classes: GABAA, GABAB and GABAC receptors. 1 GABAA and GABAC receptors belong to the nicotinicoid superfamily of ligand-gated ion channels,2 while GABA_B receptors are G-protein coupled receptors.³ GABA is a conformationally flexible molecule that acts on receptors in a chiral environment and thus enantiomers of GABA analogues might be expected to show some enantioselective actions where the chiral environments confer some preference for one enantiomer over another.^{4,5} Extensive studies have been carried out on the enantioselective actions of GABA analogues on GABA_A and GABA_B receptors, 4,6-8 while only limited studies have been made on enantioselective actions on GABA_C receptors. 9-11 GABA_C receptors are drug targets for the treatment of visual, sleep and cognitive disorders. 12

Keywords: GABA; γ-aminobutyric acid: GABOB, 3-hydroxyGABA; CGP44532 S(-)-(3-amino-2-hydroxypropyl)methylphosphinic acid; CGP44533 R(+)-(3-amino-2-hydroxypropyl)methylphosphinic acid; GABA_C receptors; Oocytes.

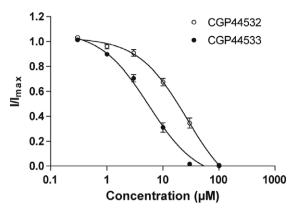
In the present study, we examine the effects of enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) and (3-amino-2-hydroxypropyl)methylphosphinic acid (S(-)-CGP44532 and R(+)-CGP44533) on human pl GABA_C receptors expressed in *Xenopus* oocytes. ¹³ The structures of these enantiomers are shown in Figure 1. As noted by other authors, the carboxylic and phosphinic acids have opposite R and S assignments because in the Cahn Ingold Prelog nomenclature the phosphinic acid assumes a higher priority than the carboxylic acid. ^{7,8} Studies on GABA_A receptors have reported S(+)-GABOB to be about twice as potent R(-)-GA-

Figure 1. Structures of R(-)- and S(+)-GABOB, S(-)-CGP44532 and R(+)-CGP44533 together with their EC₅₀ values as agonists or their IC₅₀ values as antagonists as human recombinant $\rho 1$ receptors expressed in *Xenopus* oocytes.

^{*}Corresponding author. Tel.: +61 2 9351 6117; fax: +61 2 9351 2891; e-mail: grahamj@mail.usyd.edu.au


BOB as an agonist, 6,14 while on GABA_B receptors R(-)-GABOB is the more potent agonist 14 with S(+)-GABOB acting as a partial agonist. 8 S(-)-CGP44532 and R(+)-CGP44533 have no reported action on GABA_A receptors. They are agonists at GABA_B receptors with S(-)-CGP44532 being more potent than R(+)-CGP44533 consistent with the enantioselectivity shown by GABOB. The relative potency of S(-)-CGP44532 and R(+)-CGP44533 varies in different GABA_B receptors suggesting that they may distinguish between different subtypes of GABA_B receptors. 8

S(+)-GABAOB and R(-)-GABOB acted as full agonists as shown in Figure 2. Dose–response analyses were conducted on three cells, with both drugs being tested on the same cell at concentrations of 0.3, 1, 3, 10, 30, 100, 300 and 600 μM. The EC₅₀s determined from these curves were 44.8 ± 7.4 μM for S(+)-GABOB and 19.1 ± 3.3 μM for R(-)-GABOB. A two-way paired t-test showed that the EC₅₀s were significantly different (t_{0.025,2} = 6.795, p = 0.021). The EC₅₀ for GABA under these conditions was 1.19 ± 0.02 μM.¹¹


In contrast to the enantiomers of GABOB, the corresponding methylphosphinic acid analogues showed no agonist activity and proved to be $\rho 1$ GABA_C receptor antagonists when tested on further three cells. R(+)-CGP44533, an analogue of S(+)-GABOB, was more potent than S(-)-CGP44532, an analogue of R(-)-GABOB, with IC₅₀s of 5.4 ± 0.5 and $17.1 \pm 1.2 \,\mu\text{M}$ respectively. A two-way paired t-test showed that the EC₅₀s were significantly different ($t_{0.025,2} = 7.833$, p = 0.0014) (see Fig. 3).

Thus the enantiomers of GABOB were full agonists at $\rho 1$ GABA_C receptors while S(-)-CGP44532 and R(+)-CGP44533 were antagonists. Furthermore, the GABOB enantiomers showed the opposite enantiomeric preference of R(-) > S(+) to that shown by the methylphosphinates R(+) > S(-).

The enantioselectivity (R > S) of the enantiomers of GABOB in their agonist action at human recombinant $\rho 1$ GABA_C receptors found in the present study matched that reported for their agonist actions at

Figure 2. Dose–response curves for S(+)-GABOB and R(-)-GABOB at recombinant GABA_C receptors formed from $\rho 1$ subunits. Values are expressed as means \pm SE mean (n = 3).

Figure 3. Effects of S(-)-CGP44532 and R(+)-CGP44533 as antagonists of responses to 1 μ M GABA. Values are expressed as means \pm SE mean (n = 3).

GABA_B receptors, 6,14 but was the opposite to that reported at GABA_A receptors (S > R). 6,14 The corresponding methylphosphinic acid analogues proved to be $\rho 1$ GABA_C receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA_A, GABA_B and GABA_C receptors and are indicative of different chiral environments in the GABA binding pocket of the different classes of GABA receptors.

Molecular modelling of ligand-gated ion channels is challenging. 15 While some progress has been made in modelling GABA_C receptors 16,17 such studies have been hampered by the lack of data regarding chiral ligands having relatively potent and defined actions on these receptors. In earlier studies, we showed that the enantiomers of cis-2-aminocyclopropane carboxylic acid showed opposite pharmacology at pl GABA_C receptors, with the (1S,2R)-cis enantiomer ((+)-CAMP) being a relatively potent full agonist (EC₅₀ 40 μM) and the (1R,2S)-cis enantiomer ((-)-CAMP) a weak antagonist (IC₅₀ 890 μM). Subsequently, studies were carried out on the enantiomers of the cyclopentane and cyclopentene analogues of GABA, most of which turned out to be partial agonists of varying potency and efficacy. 10 These studies were extended to the enantiomers of 4amino-2-methylbutanoic acid where the (S)-enantiomer ((S)-2MeGABA) was a relatively potent agonist (EC₅₀ $65 \,\mu\text{M}$) and the (R)-enantiomer a potent antagonist (IC₅₀ 16 μM).¹¹ To these chiral ligands we can now add R(-)- and S(+)-GABOB as potent agonists (EC₅₀s 19 and 45 μ M, respectively), and S(-)-CGP44532 and R(+)-CGP44533 as potent antagonists (IC₅₀s 17 and 5 μ M, respectively). The present findings are in general agreement with the rationale developed by Crittenden et al.¹¹ of competing steric interactions of methyl and methylene moieties at the GABA binding pocket on GABA_C receptors, where steric bulk on one side of the ligand favours agonist action while steric bulk on the other side favours antagonist action. The hydroxyl moieties in the present series of chiral ligands have, however, quite different opportunities to the methyl and methylene moieties for interaction with amino acids in the binding pocket via hydrogen bonding.

Acknowledgments

We are grateful to Prof. Povl Krogsgaard-Larsen and Dr. Wolfgang Froestl for gifts of the test compounds, Dr. George Uhl for the gift of human ρ_1 DNA. We are also grateful to Dr. Hue Tran and Dr. Kong Li for performing the surgery to provide the oocytes and the National Health and Medical Research Council of Australia for financial support.

References and notes

- Chebib, M.; Johnston, G. A. R. J. Med. Chem. 2000, 43, 1427.
- Le Novere, N.; Changeux, J. P. Nucleic Acids Res. 2001, 29, 294.
- Bowery, N. G.; Bettler, B.; Froestl, W.; Gallagher, J. P.; Marshall, F., et al. *Pharmacol. Rev.* 2002, 54, 247.
- 4. Johnston, G. A. R.; Allan, R. D.; Andrews, P. R.; Kennedy, S. M. E.; Twitchin, B. *Advances in Pharmacology and Therapeutics*; Pergamon: Oxford, 1979, 11.
- 5. Miklos, S. Enantiomer 1996, 1, 403.
- Krogsgaard-Larsen, P.; Nielson, L.; Falch, E.; Curtis, D. R. J. Med. Chem. 1985, 28, 1612.
- Froestl, W.; Mickel, S. J.; Hall, R. G.; Von Sprecher, G.; Strub, D., et al. J. Med. Chem. 1995, 38, 3297.
- 8. Ong, J.; Bexis, S.; Marino, V.; Parker, D. A. S.; Kerr, D. I. B., et al. *Eur. J. Pharmacol.* **2001**, *412*, 27.
- Duke, R. K.; Chebib, M.; Balcar, V. J.; Allan, R. D.; Mewett, K. N., et al. J. Neurochem. 2000, 75, 2602.

- Chebib, M.; Duke, R. K.; Allan, R. D.; Johnston, G. A. R. Eur. J. Pharmacol. 2001, 430, 185.
- 11. Crittenden, D. L.; Park, A.; Qiu, J.; Silverman, R. B.; Duke, R. K., et al. *Bioorg. Med. Chem.* **2006**, *14*, 447.
- Johnston, G. A. R.; Chebib, M.; Hanrahan, J. R.; Mewett, K. N. Curr. Drug Targ. CNS Neurol. Disord. 2003, 2, 260.
- 13. The procedures involving the expression of human recombinant p1 GABA_C receptors in Xenopus laevis, two-electrode voltage clamp recording from these oocytes and data analyses were carried out according to those described by Crittenden et al. 11 and were approved by the Animal Ethics Committee of the University of Sydney. Expression of the human p1 cRNA in Xenopus oocytes generated GABA-activated currents. Under two-electrode voltage clamp conditions at -60 mV, the currents ranged between 200 and 2000 nA with the maximum GABA response being obtained at 100 µM GABA. The enantiomers of GABOB and (3-amino-2-hydroxypropyl)methylphosphinic acid were kindly provided by Prof. Povl Krogsgaard-Larsen (University of Copenhagen, Denmark) and Dr. Wolfgang Froestl (Acimmune, Lausanne, Switzerland). Human p1 cDNA subcloned in pcDNA1.1 (Invitrogen, San Diego, CA, USA) was a gift from Dr. George Uhl (National Institute for Drug Abuse, Baltimore, MD, USA). All other reagents were purchased from Sigma (St. Louis, MO, USA). Xenopus laevis were obtained from an African Xenopus colony and housed in the Faculty of Veterinary Science at the University of Sydney.
- Falch, E.; Hedegaard, A.; Nielsen, B.; Jensen, B. R.; Hieds, H., et al. J. Neurochem. 1986, 47, 898.
- Bertaccini, E.; Trudell, J. R. Int. Rev. Neurobiol. 2001, 48, 141.
- Sedelnikova, A.; Smith, C. D.; Zakharkin, S. O.; Davis, D.; Weiss, D. S., et al. J. Biol. Chem. 2005, 280, 1535.
- 17. Harrison, N. J.; Lummis, S. C. J. Mol. Model. 2006, 12, 317